

Treatment of Cancerassociated VTE

Geoffrey Barnes, MD, MSc @GBarnesMD 2023 ACC CV Symposium January 21, 2023

Disclosures

- Consulting Fees
 - Pfizer/Bristol-Myers Squib, Janssen, Bayer, Boston Scientific, Abbott Vascular
- Grant Funding
 - Boston Scientific
- Board of Directors
 - Anticoagulation Forum

Clinical Case

- 65yo woman with recently diagnosed stage III lung cancer presents to oncology clinic for management
- PMH: Hypertension, obesity, and diabetes mellitus
- FM: Mother with breast cancer, sister with DVT
- SH: Former smoker (quit 10 years ago)
- Meds: Lisinopril, metformin

During the clinical evaluation, the team considers these questions:

- 1) What is her risk of developing a DVT or PE?
- 2) If she develops a VTE, how should she be managed?

Cancer-VTE Epidemiology

- 20-30% of all "First VTE" events may be cancer-associated
- Cancer patients at 4-7x 个 risk of VTE than non-cancer patients

Blood 2021;137:1959-1969 Blood 2013;122:1712-1723

Cancer-VTE Epidemiology

Overall VTE Risk in Cancer:

- Tumor-specific factors
 - Limited vs. metastatic (biggest predictor)
 - Tumor type (pancreatic, brain)
- Anatomic factors
 - Compression of veins
 - Infiltration
- Patient factors
 - Obesity
 - Age
- Therapy-associated factors
 - Chemotherapy
 - Surgery

Blood 2021;137:1959-1969. Blood 2013;122:1712-1723

Clinical Case (Cont)

- Starts chemotherapy & radiation treatment
- 2 weeks later, develops acute shortness of breath
 - PECT \rightarrow Bilateral PE, no right-heart strain
 - Vital signs stable
- Which anticoagulation strategy is best?

Cancer-associated VTE

LMWH > Warfarin for VTE Recurrence

NEJM 2003; 349:146-53

Direct Oral Anticoagulants: Hokusai VTE Study

SAMUEL AND JEAN FRANKEL CARDIOVASCULAR CENTER MICHIGAN MEDICINE

NEJM 2018;378:615-624

CARAVAGGIO Study

N=1154 patients with cancer-VTE

NEJM 2020;382:1599-1607

DOAC vs. LMWH Meta-analysis

GI Cancer and Bleeding Risk

	DOACs		LMWH		Risk Ratio			Risk Ratio
study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
RCT					1.1			
oung 2018	8	91	5	86	10.1%	1.51 [0.51, 4.44]	2018	
lokadem 2020	2	25	3	23	5.4%	0.61 [0.11, 3.35]	2020	
fulder 2020	15	165	4	140	10.1%	3.18 [1.08, 9.37]	2020	
geno 2020	9	188	9	187	12.3%	0.99 [0.40, 2.45]	2020	
Gm 2022	8	44	2	46	6.5%	4.18 [0.94, 18.62]	2022	
Subtotal (95% CI)		513		482	44.4%	1.65 [0.89, 3.08]		◆
otal events	42		23					
leterogeneity: Tau ^z =	0.14; Ch	= 5.50	0, df = 4 (P = 0.2	4); I ² = 27	%		
est for overall effect	Z=1.59	(P = 0.1	1)					
Cohort								
ecio-Boiles 2019	10	66	2	40	6.7%	3.03 [0.70, 13.13]	2019	
ee 2019	4	78	18	203	10.4%	0.58 [0.20, 1.66]	2019	
im 2020	12	69	8	105	13.2%	2.28 [0.98, 5.30]	2020	
hen 2021	5	96	12	122	10.9%	0.53 [0.19, 1.45]	2021	
loughton 2021	14	263	11	189	14.4%	0.91 [0.42, 1.97]	2021	
ubtotal (95% CI)		572		659	55.6%	1.09 [0.57, 2.06]		•
otal events	45		51					
leterogeneity: Tau ² =	0.27; Ch	= 8.40	0, df = 4 (P = 0.0	8); l² = 52	%		
est for overall effect	Z=0.25	(P = 0.8	10)					
otal (95% CI)		1085		1141	100.0%	1.31 [0.84, 2.04]		*
otal events	87		74					75 See 12 12
leterogeneity: Tau ² =	0.20; Ch	F= 15.3	29, df = 9	(P = 0.	08); I [#] = 4	1%		
est for overall effect	Z=1.19	(P = 0.2	(3)	241) - 930 	0-93883 000 			LMWH more MR_DOACs more MR
est for subaroun diff	ferences:	Chi ² = 1	0.86, df =	1(P =	0.35) (² =	0%		CHARTERING DOAGS HOLE MD

Thromb Haemost 2018;118:1439–1449

Thrombosis J 2022;20:41

ASH and ACCP Guideline Recs

Anticoagulation for at least 3-6 months
Prefer longer-therapy (>6 months)

• DOAC > LMWH > VKA

Chest 2021;160:2247-2259. Blood Adv 2021;5:927-974

Return to the Case

- She initiates on a factor Xa inhibitor for acute PE
- Should she receive an IVC filter?

Role of IVC Filters for Cancer-VTE

88,585 Patients in California and Florida (USA)

2005-2014

Variable	Odds ratio (95% CI)					P Value
Upper gastrointestinal bleeding	1.32 (1.29-1.37)					<.001
Intracranial bleeding	1.21 (1.19-1.11)					<.001
Lower gastrointestinal bleeding	1.19 (1.17-1.20)					<.001
Metastatic disease	1.12 (1.12-1.13)		-			<.001
Proximal deep vein thrombosis	1.10 (1.10-1.11)					<.001
Coagulopathy	1.09 (1.08-1.10)					<.001
Age	1.00 (1.00-1.00)					<.001
Use of anticoagulation	0.96 (0.95-0.97)					<.001
		 1	1.1	1,2	1.3	

Odds ratio (95% CI)

Role of IVC Filters for Cancer-VTE

JAMA Netw Open 2020;3:e2011079

Return to the Case

- 65yo woman with lung cancer
- What is her risk of developing VTE?
 - High stage III lung cancer
- What is best anticoagulation strategy?
 - Factor Xa inhibitor (apixaban, edoxaban, rivaroxaban) preferred
 - LMWH as secondary option
- When are IVC filters recommended?
 - When anticoagulation *cannot* be given

Summary

- Cancer is a leading cause of VTE
 - Increasing prevalence
- Factor Xa inhibitors are first-line therapy for cancer-VTE
 - Caution with GI cancer
- IVC filter use is very limited

Thank you!

