Biomarker strategies to diagnose NSTEMI

Thomas Metkus MD PhD

Cardiologist, intensivist, echocardiographer Director of Cardiac Critical Care, JHM and CICU, JHH Assistant Professor of Medicine and Surgery Cardiology and Cardiac Surgery, Departments of Medicine & Surgery Associate Faculty, Armstrong Institute for Patient Safety and Quality

Learning objectives

- Understand physiology of troponin testing using highly sensitive assays
- Describe validated pathways to rule out MI using contemporary troponin assays
- Use biomarkers to risk-stratify acute coronary syndromes

48 year old man

- PMH of dyslipidemia and FH of CAD (dad with MI at age 52)
- While shoveling snow 4 h prior, had 'indigestion' and diaphoresis which abated with rest.
- Symptoms recurred while sitting on the couch prompting ER visit
- Took aspirin and tums
- Symptom free on ED arrival

Physical exam

- General: comfortable, not distressed
- JVP: 5 cm H2O
- Pulses normal, no bruits
- Extremities warm
- Lungs clear
- Cor: regular, S1: 1/6 midpeaking murmur: S2
- Abd: NT

48 yo M with unstable and rest angina, TWI on ECG in an ischemic pattern

• How can we use biomarkers in patients with suspected acute MI?

Guideline recommendations

2.3.4. Biomarkers

Recommendations for Biomarkers Referenced studies that support the recommendations are summarized in Chine Duty Rupplement 7.

COR	LOE	Recommendations			
1 B-NR		 In patients presenting with acute chest pain, serial cTn I or T levels are useful to identify abnormal values and a rising or falling pattern indicative of acute myocardial injury.¹⁻²¹ 			
1	B-NR	 In patients presenting with acute chest pain, high-sensitivity cTn is the preferred biomarker because it enables more rapid detection or exclusion of myocardial injury and increases diagnostic accuracy.^{17,21-25} 			
1	C-EO	 Clinicians should be familiar with the analytical performance and the 99th percentile upper reference limit that defines myocardial injury for the cTn assay used at their institution.^{23,26} 			
3: No benefit	B-NR	 With availability of cTn, creatine kinase myocardial (CK-MB) isoenzyme and myoglobin are not useful for diagnosis of acute myocardial injury.²⁷⁻³² 			

Troponin- pathobiology

de Lemos. JAMA, 2013

Pathophysiology

Plaque rupture/erosion with occlusive thrombus

Plaque rupture/erosion with non-occlusive thrombus

Myocardial Infarction Type 2

Atherosclerosis and oxygen supply/demand imbalance

Vasospasm or coronary microvascular dysfunction

Non-atherosclerotic coronary dissection

Oxygen supply/demand imbalance alone

Troponin- pathobiology

de Lemos. JAMA. 2013

Serial sampling and kinetics

Troponin assays: conventional & HS

ESC European Heart Journal (2021) 42, 1289-1367 European Society doi:10.1093/eurteart/ietex375

ESC GUIDELINES

Criteria

Clinical Criteria for MI

The clinical definition of MI denotes the presence of acute myocardial injury detected by abnormal cardiac biomarkers in the setting of evidence of acute myocardial ischemia.

Criteria for Myocardial Injury

Detection of an elevated cTn value above the 99th percentile URL is defined as myocardial injury. The injury is considered acute if there is a rise and/or fall of cTn values.

Criteria for Type 1 MI

Detection of a rise and/or fall of cTn values with at least 1 value above the 99th percentile URL and with at least 1 of the following:

- Symptoms of acute myocardial ischemia;
- New ischemic ECG changes;
- Development of pathological Q waves;
- Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality in a pattern consistent with an ischemic etiology;
- Identification of a coronary thrombus by angiography including intracoronary imaging or by autopsy.*

Criteria for Type 2 MI

Detection of a rise and/or fall of cTn values with at least 1 value above the 99th percentile URL, and evidence of an imbalance between myocardial oxygen supply and demand unrelated to acute coronary atherothrombosis, requiring at least 1 of the following:

- Symptoms of acute myocardial ischemia;
- New ischemic ECG changes;
- Development of pathological Q waves;
- Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality in a pattern consistent with an ischemic etiology

Reminder: assay specificity

Table 5 Assay specific cut-off levels in ng/l within the 0 h/1 h and 0 h/2 h algorithms

0 h/1 h algorithm	Very low	Low	No 1hΔ	High	1hA
hs-cTn T (Elecsys; Roche)	<5	<12	<3	≥52	≥5
hs-cTn I (Architect; Abbott)	<4	<5	<2	≥64	≥6
hs-cTn I (Centaur; Siemens)	<3	<6	<3	≥120	≥12
hs-cTn I (Access; Beckman Coulter)	<4	<5	<4	≥50	≥15
hs-cTn I (Clarity; Singulex)	<1	<2	<1	≥30	≥6
hs-cTn I (Vitros; Clinical Diagnostics)	<1	<2	<1	≥40	≥4
hs-cTn I (Pathfast; LSI Medience)	<3	<4	<3	≥90	≥20
hs-cTn I (TriageTrue; Quidel)	<4	<5	<3	≥60	≥8
0 h/2 h algorithm	Very low	Low	No 2hA	High	2hA
hs-cTn T (Elecsys; Roche)	<5	<14	<4	≥52	≥10
hs-cTn I (Architect; Abbott)	<4	<6	<2	≥64	≥15
hs-cTn I (Centaur; Siemens)	<3	<8	<7	≥120	≥20
hs-cTn I (Access; Beckman Coulter)	<4	<5	<5	≥50	≥20
hs-cTn I (Clarity; Singulex)	<1	TBD	TBD	≥30	TBD
hs-cTn I (Vitros; Clinical Diagnostics)	<1	TBD	TBD	≥40	TBD
hs-cTn I (Pathfast; LSI Medience)	<3	TBD	TBD	≥90	TBD
hs-cTn I (TriageTrue; Quidel)	<4	TBD	TBD	≥60	TBD

So far we have...

- Established troponin as the preferred biomarker in AMI
- Established kinetics of trop release in AMI
- Reviewed contemporary HS assays with very low LoD
- Reviewed the fact that clinical presentation, absolute Tn value and delta Tn over time all matter

Let's build pathways

Caveats: clinical judgement, timing, age, renal function, time of symptoms

Table 3 Clinical implications of high-sensitivity cardiac troponin assays

Compared with standard cardiac troponin assays, hs-cTn assays:

- Have higher NPV for AMI.
- Reduce the 'troponin-blind' interval leading to earlier detection of AMI.
- Result in ~4% absolute and ~20% relative increases in the detection of type 1 MI and a corresponding decrease in the diagnosis of unstable angina.
- Are associated with a 2-fold increase in the detection of type 2 MI.

Levels of hs-cTn should be interpreted as quantitative markers of cardiomyocyte damage (i.e. the higher the level, the greater the likelihood of MI):

- Elevations beyond 5-fold the upper reference limit have high (>90%) PPV for acute type 1 MI.
- Elevations up to 3-fold the upper reference limit have only limited (50-60%) PPV for AMI and may be associated with a broad spectrum of conditions.
- It is common to detect circulating levels of cardiac troponin in healthy individuals.

Rising and/or falling cardiac troponin levels differentiate acute (as in MI) from chronic cardiomyocyte damage (the more pronounced the change, the higher the likelihood of AMI).

BESC

Put it all together

• 48 yo M with unstable and rest angina stuttering over hours, TWI on ECG in an ischemic pattern

<u>HsTnT 50 ng/L</u>

Case conclusion

- Early cor angio: prox LAD lesion, successful PCI
- Normal LV function
- Discharge HD 2 to cardiac rehab
- Doing well

Learning objectives

- Understand physiology of troponin testing using highly sensitive assays
- Describe validated pathways to rule out MI using contemporary troponin assays
- Use biomarkers to risk-stratify acute coronary syndromes

tmetkus1@jhmi.edu

